On the one-dimensional parabolic obstacle problem with variable coefficients

نویسندگان

  • A. Blanchet
  • J. Dolbeault
  • R. Monneau
چکیده

This note is devoted to continuity results of the time derivative of the solution to the onedimensional parabolic obstacle problem with variable coefficients. It applies to the smooth fit principle in numerical analysis and in financial mathematics. It relies on various tools for the study of free boundary problems: blow-up method, monotonicity formulae, Liouville’s results. AMS Classification: 35R35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional advection-dispersion equation with depth- dependent variable source concentration

The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....

متن کامل

Two-dimensional advection-dispersion equation with depth- dependent variable source concentration

The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....

متن کامل

A numerical scheme for solving nonlinear backward parabolic problems

‎In this paper a nonlinear backward parabolic problem in one‎ ‎dimensional space is considered‎. ‎Using a suitable iterative‎ ‎algorithm‎, ‎the problem is converted to a linear backward parabolic‎ ‎problem‎. ‎For the corresponding problem‎, ‎the backward finite‎ ‎differences method with suitable grid size is applied‎. ‎It is shown‎ ‎that if the coefficients satisfy some special conditions‎, ‎th...

متن کامل

Solving an Ill-Posed Cauchy Problem for a Two-Dimensional Parabolic PDE with Variable Coefficients Using a Preconditioned GMRES Method

The sideways parabolic equation (SPE) is a model of the problem of determining the temperature on the surface of a body from the interior measurements. Mathematically it can be formulated as a noncharacteristic Cauchy problem for a parabolic partial differential equation. This problem is severely ill-posed in an L2 setting. We use a preconditioned generalized minimum residual method (GMRES) to ...

متن کامل

Inverse Problem for a Coupled Parabolic System with Discontinuous Conductivities: One-dimensional Case

We study the inverse problem of the simultaneous identification of two discontinuous diffusion coefficients for a one-dimensional coupled parabolic system with the observation of only one component. The stability result for the diffusion coefficients is obtained by a Carleman-type estimate. Results from numerical experiments in the one-dimensional case are reported, suggesting that the method m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004